Factors Contributing to the Biofilm-Deficient Phenotype of Staphylococcus aureus sarA Mutants

نویسندگان

  • Laura H. Tsang
  • James E. Cassat
  • Lindsey N. Shaw
  • Karen E. Beenken
  • Mark S. Smeltzer
چکیده

Mutation of sarA in Staphylococcus aureus results in a reduced capacity to form a biofilm, but the mechanistic basis for this remains unknown. Previous transcriptional profiling experiments identified a number of genes that are differentially expressed both in a biofilm and in a sarA mutant. This included genes involved in acid tolerance and the production of nucleolytic and proteolytic exoenzymes. Based on this we generated mutations in alsSD, nuc and sspA in the S. aureus clinical isolate UAMS-1 and its isogenic sarA mutant and assessed the impact on biofilm formation. Because expression of alsSD was increased in a biofilm but decreased in a sarA mutant, we also generated a plasmid construct that allowed expression of alsSD in a sarA mutant. Mutation of alsSD limited biofilm formation, but not to the degree observed with the corresponding sarA mutant, and restoration of alsSD expression did not restore the ability to form a biofilm. In contrast, concomitant mutation of sarA and nuc significantly enhanced biofilm formation by comparison to the sarA mutant. Although mutation of sspA had no significant impact on the ability of a sarA mutant to form a biofilm, a combination of protease inhibitors (E-64, 1-10-phenanthroline, and dichloroisocoumarin) that was shown to inhibit the production of multiple extracellular proteases without inhibiting growth was also shown to enhance the ability of a sarA mutant to form a biofilm. This effect was evident only when all three inhibitors were used concurrently. This suggests that the reduced capacity of a sarA mutant to form a biofilm involves extracellular proteases of all three classes (serine, cysteine and metalloproteases). Inclusion of protease inhibitors also enhanced biofilm formation in a sarA/nuc mutant, with the combined effect of mutating nuc and adding protease inhibitors resulting in a level of biofilm formation with the sarA mutant that approached that of the UAMS-1 parent strain. These results demonstrate that the inability of a sarA mutant to repress production of extracellular nuclease and multiple proteases have independent but cumulative effects that make a significant contribution to the biofilm-deficient phenotype of an S. aureus sarA mutant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation

BACKGROUND The accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) play opposing roles in Staphylococcus aureus biofilm formation. There is mounting evidence to suggest that these opposing roles are therapeutically relevant in that mutation of agr results in increased biofilm formation and decreased antibiotic susceptibility while mutation of sarA has the opposite effec...

متن کامل

Mutation of sarA in Staphylococcus aureus limits biofilm formation.

Mutation of sarA resulted in a reduced capacity to form a biofilm in six of the eight Staphylococcus aureus strains we tested (UAMS-1, UAMS-601, SA113, SC-01, S6C, and DB). The exceptions were Newman, which formed a poor biofilm under all conditions, and RN6390, which consistently formed a biofilm only after mutation of agr. Mutation of agr in other strains had little impact on biofilm formatio...

متن کامل

Identification of Genes Involved in Polysaccharide-Independent Staphylococcus aureus Biofilm Formation

Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these stra...

متن کامل

Characterization of biofilm formation and virulence factors of Staphylococcus aureus isolates from paediatric patients in Tehran, Iran

Objective(s): Staphylococcus aureus can cause several infections. Its capability to form biofilm has been reported to be a vital property involved in the bacteria’s pathogenesis. Various genes contributing to biofilm formation have not yet been completely clarified. This study was designed to evaluate the factors influencing adherence and biofilm formation in S. aureus...

متن کامل

Biofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus

Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008